c_mat_ft.Rd
c mat ft
c_mat_ft(model_input, R)
model_input | Model input as a character string. Multiple models need to be on their own line. Model syntax uses lavann like syntax, see details for more details about this syntax. |
---|---|
R | A correlation matrix, most likely this will be the average correlation matrix outputted from the metafor package. |
A list.
Br <- matrix(c(1.00000000, -0.09773331, -0.1755029, 0.3186775, -0.09773331, 1.00000000, 0.5271873, -0.4175596, -0.17550292, 0.5271872, 1.0000000, -0.4006848, 0.31867753, -0.41755963, -0.4006848, 1.0000000), nrow = 4, byrow = TRUE) colnames(Br) <- c("Performance", "Self_confidence", "Cognitive", "Somatic" ) rownames(Br) <- colnames(Br) ## Proposed path model model <- "## Regression paths Performance ~ Self_confidence + Cognitive + Somatic Self_confidence ~ Cognitive + Somatic " c_mat_ft(model, Br)#> $model_input #> [1] "## Regression paths\nPerformance ~ Self_confidence + Cognitive + Somatic\nSelf_confidence ~ Cognitive + Somatic " #> #> $A_mat #> Performance Self_confidence Cognitive Somatic #> Performance 0 0.08316153 -0.09261001 0.3162950 #> Self_confidence 0 0.00000000 0.42870532 -0.2457839 #> Cognitive 0 0.00000000 0.00000000 0.0000000 #> Somatic 0 0.00000000 0.00000000 0.0000000 #> #> $S_mat #> Performance Self_confidence Cognitive Somatic #> Performance 0.8910782 0.0000000 0.0000000 0.0000000 #> Self_confidence 0.0000000 0.6713626 0.0000000 0.0000000 #> Cognitive 0.0000000 0.0000000 1.0000000 -0.4006848 #> Somatic 0.0000000 0.0000000 -0.4006848 1.0000000 #> #> $F_mat #> Performance Self_confidence Cognitive Somatic #> Performance 1 0 0 0 #> Self_confidence 0 1 0 0 #> Cognitive 0 0 1 0 #> Somatic 0 0 0 1 #> #> $C_mat #> Performance Self_confidence Cognitive Somatic #> Performance 1.00000000 -0.09773331 -0.1755029 0.3186775 #> Self_confidence -0.09773331 1.00000000 0.5271872 -0.4175596 #> Cognitive -0.17550292 0.52718720 1.0000000 -0.4006848 #> Somatic 0.31867753 -0.41755963 -0.4006848 1.0000000 #> #> $Mul_R2 #> Performance Self_confidence #> 0.1089218 0.3286374 #> #> $num_freePar #> [1] 8 #> #> $df #> [1] 2 #>