library(metaRmat)

Br <-  matrix(c(1.00000000, -0.09773331, -0.1755029,  0.3186775,
              -0.09773331,  1.00000000,  0.5271873, -0.4175596,
              -0.17550292,  0.5271872,  1.0000000, -0.4006848,
              0.31867753, -0.41755963, -0.4006848,  1.0000000), 
              nrow = 4, byrow = TRUE) 

colnames(Br) <- c("Performance",  "Self_confidence",  "Cognitive", "Somatic" )

rownames(Br) <- colnames(Br)


## Proposed path model

model <- "## Regression paths
          Performance ~  Self_confidence  + Cognitive  + Somatic
          Self_confidence ~ Cognitive + Somatic "


find_B(model, Br)
## [[1]]
## Self_confidence -> Performance       Cognitive -> Performance 
##                     0.08316153                    -0.09261001 
##         Somatic -> Performance 
##                     0.31629500 
## 
## [[2]]
## Cognitive -> Self_confidence   Somatic -> Self_confidence 
##                    0.4287053                   -0.2457839
c_mat_ft(model, Br) # the same results with lavaan ML
## $model_input
## [1] "## Regression paths\n          Performance ~  Self_confidence  + Cognitive  + Somatic\n          Self_confidence ~ Cognitive + Somatic "
## 
## $A_mat
##                 Performance Self_confidence   Cognitive    Somatic
## Performance               0      0.08316153 -0.09261001  0.3162950
## Self_confidence           0      0.00000000  0.42870532 -0.2457839
## Cognitive                 0      0.00000000  0.00000000  0.0000000
## Somatic                   0      0.00000000  0.00000000  0.0000000
## 
## $S_mat
##                 Performance Self_confidence  Cognitive    Somatic
## Performance       0.8910782       0.0000000  0.0000000  0.0000000
## Self_confidence   0.0000000       0.6713626  0.0000000  0.0000000
## Cognitive         0.0000000       0.0000000  1.0000000 -0.4006848
## Somatic           0.0000000       0.0000000 -0.4006848  1.0000000
## 
## $F_mat
##                 Performance Self_confidence Cognitive Somatic
## Performance               1               0         0       0
## Self_confidence           0               1         0       0
## Cognitive                 0               0         1       0
## Somatic                   0               0         0       1
## 
## $C_mat
##                 Performance Self_confidence  Cognitive    Somatic
## Performance      1.00000000     -0.09773331 -0.1755029  0.3186775
## Self_confidence -0.09773331      1.00000000  0.5271872 -0.4175596
## Cognitive       -0.17550292      0.52718720  1.0000000 -0.4006848
## Somatic          0.31867753     -0.41755963 -0.4006848  1.0000000
## 
## $Mul_R2
##     Performance Self_confidence 
##       0.1089218       0.3286374 
## 
## $num_freePar
## [1] 8
## 
## $df
## [1] 2
N <- 573
model_fit(model, R = Br, method_mat  = "lavaan", 
          method_null = "sem", N)
## $path_coefficients
## $path_coefficients[[1]]
## Self_confidence -> Performance       Cognitive -> Performance 
##                     0.08316153                    -0.09261001 
##         Somatic -> Performance 
##                     0.31629500 
## 
## $path_coefficients[[2]]
## Cognitive -> Self_confidence   Somatic -> Self_confidence 
##                    0.4287053                   -0.2457839 
## 
## 
## $Model
##    Chi2      df  pvalue 
## 59.1102  2.0000  0.0000 
## 
## $NullModel
## Chi2Null   dfNull 
## 643.3372   6.0000 
## 
## $CFI
## [1] 0.9103925
## 
## $TLI
## [1] 0.7311776
## 
## $RMSEA
## [1] 0.2234311
## 
## $RMSEA_CI
## [1] 0.1671203 0.2835352
## 
## $SRMR
## [1] 0.2672185
model_fit(model, R = Br, method_mat  = "loehlin", 
          method_null = "sem", N )
## $path_coefficients
## $path_coefficients[[1]]
## Self_confidence -> Performance       Cognitive -> Performance 
##                     0.08316153                    -0.09261001 
##         Somatic -> Performance 
##                     0.31629500 
## 
## $path_coefficients[[2]]
## Cognitive -> Self_confidence   Somatic -> Self_confidence 
##                    0.4287053                   -0.2457839 
## 
## 
## $Model
##   Chi2     df pvalue 
##      0      2      1 
## 
## $NullModel
## Chi2Null   dfNull 
## 643.3372   6.0000 
## 
## $CFI
## [1] 1.003138
## 
## $TLI
## [1] 1.009414
## 
## $RMSEA
## [1] "RMSEA is negative"
## 
## $RMSEA_CI
## NULL
## 
## $SRMR
## [1] 3.492857e-08